First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites.

نویسندگان

  • Hanjun Fang
  • Preeti Kamakoti
  • Peter I Ravikovitch
  • Matthew Aronson
  • Charanjit Paur
  • David S Sholl
چکیده

The development of accurate force fields is vital for predicting adsorption in porous materials. Previously, we introduced a first principles-based transferable force field for CO2 adsorption in siliceous zeolites (Fang et al., J. Phys. Chem. C, 2012, 116, 10692). In this study, we extend our approach to CO2 adsorption in cationic zeolites which possess more complex structures. Na-exchanged zeolites are chosen for demonstrating the approach. These methods account for several structural complexities including Al distribution, cation positions and cation mobility, all of which are important for predicting adsorption. The simulation results are validated with high-resolution experimental measurements of isotherms and microcalorimetric heats of adsorption on well-characterized materials. The choice of first-principles method has a significant influence on the ability of force fields to accurately describe CO2-zeolite interactions. The PBE-D2 derived force field, which performed well for CO2 adsorption in siliceous zeolites, does not do so for Na-exchanged zeolites; the PBE-D2 method overestimates CO2 adsorption energies on multi-cation sites that are common in cationic zeolites with low Si/Al ratios. In contrast, a force field derived from the DFT/CC method performed well. Agreement was obtained between simulation and experiment not only for LTA-4A on which the force field fitting is based, but for other two common adsorbents, NaX and NaY.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transferable force fields for adsorption of small gases in zeolites.

We provide transferable force fields for oxygen, nitrogen, and carbon monoxide that are able to reproduce experimental adsorption in both pure silica and alumino-substituted zeolites at cryogenic and high temperatures. The force field parameters can be combined with those previously reported for carbon dioxide, methane, and argon, opening the possibility for studying mixtures of interest contai...

متن کامل

Doe Nanoporous Materials Genome Center Kick off Meeting | University of Minnesota Poster Session Abstracts Title: Adsorption of Polar Compounds from Gas and Solution Phases onto Zeolites

Over the past 20 years, molecular simulation studies have been widely utilized to investigate the adsorption of non-polar and weakly polar species from the gas phase onto zeolites. In contrast, investigations of the adsorption of polar and hydrogen-bonding compounds from a solution phase are very sparse because of a lack of transferable force fields and efficient simulation algorithms for these...

متن کامل

Modelling and Simulation in Materials Science and Engineering

In this work we propose a new force field for modelling of adsorption of CO2, N2, O2 and Ar in all silica and Na+ exchanged Si–Al zeolites. The force field has a standard molecular-mechanical functional form with electrostatic and Lennard-Jones interactions satisfying Lorentz–Berthelot mixing rules and thus has a potential for further extension in terms of new molecular types. The parameters fo...

متن کامل

Force-Field Development from Electronic Structure Calculations with Periodic Boundary Conditions: Applications to Gaseous Adsorption and Transport in Metal-Organic Frameworks.

We present a systematic and efficient methodology to derive accurate (nonpolarizable) force fields from periodic density functional theory (DFT) calculations for use in classical molecular simulations. The methodology requires reduced computation cost compared with other conventional ways. Moreover, the whole process is performed self-consistently in a fully periodic system. The force fields de...

متن کامل

Advances in principal factors influencing carbon dioxide adsorption on zeolites.

We report the advances in the principal structural and experimental factors that might influence the carbon dioxide (CO2) adsorption on natural and synthetic zeolites. The CO2 adsorption is principally govern by the inclusion of exchangeable cations (countercations) within the cavities of zeolites, which induce basicity and an electric field, two key parameters for CO2 adsorption. More specific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 31  شماره 

صفحات  -

تاریخ انتشار 2013